
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 884
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

FPGA Implementation of Cryptographic
Algorithms: A Survey

Ambika R
1
 Sahana Devanathan

2

1Associate Professor, 2 Assistant Professor, BMS Institute of Technology, Bangalore-560064
ambika2810@gmail.com ,sahanadev84@gmail.com

Abstract

Cryptography is the art of using mathematics to address the issue of information security. The basic operation in RSA algorit hm is modular
exponentiation on large integers, and this operation requires a long computation time. The square and multiply method is the most popular and effective
algorithm for computing modular exponentiation . The development of a modular multiplication algorithm suitably mapped to a s ystolic array architecture

targeted for implementation in a reconfigurable logic device. The features of the Altera FLEXIKE that makes it mostly suitable to implement the systolic
array architecture. This device consists of four types of reconfigurable elements, the logic array blocks (LAB), embedded array blocks (EAB), the I/O
elements (IOE) and the routing resource.

A hardware architecture , for the implementation of the ICE (Information Concealment Engine) encryption algorithm. Since this cipher is optimized for
use on software, a hardware implementation of that algorithm that achieves good performance results has much interest. The proposed implementation
can be used for both encryption and decryption process. It is a folded architecture using feedback logic, designed for small chip covered area and high

speed performance. The proposed architecture was implemented by using an FPGA device. The achieved throughput is equal to 116 Mbit/sec, using a
system clock with frequency up to 29.1 MHz.

Index Terms: Cryptography, CPLD, FPGA, ICE, Montgomery algorithm, RSA, security, VLSI.

1. Introduction

Among the existing algorithms for public-key

cryptography, the Rivest-Shamir-Adleman (RSA) algorithm

is the best known. Its security lies in the difficulty of the

factorizing large integers [l]. In RSA, a longer key size

means better security. Improvements in the factorization

algorithm may inadvertently require that the size of the key

be continually and appropriately recommended. The

.flexibility to change key length or modify the embedded

algorithm to respond to design flaws or changes in

standards or data formats, requires hardware

reconfigurability. Reconfigurable hardware applies to a

device that can be configured, at run-time, to implement a

function as a hardware circuit. Commercially available

reconfigurable devices include Field Programmable Gate

Arrays (FPGA) and Complex Programmable Logic Devices

(CPLD). The basic operation in RSA algorithm is modular

exponentiation on large integers, and this operation

requires a long computation time. The square and multiply

method [7] is the most popular and effective algorithm for

computing modular exponentiation. The technique reduces

the problem to a series of modular multiplications and

squaring steps. Consequently, it is critical that the modular

multiplication operation is fast, and Montgomery [2] has

proposed a fast method for multiplying two integers

modulo M, while avoiding division by M. The idea is

transform the integers to M-residues and compute the

multiplication with these M-residues. It is then transformed

back to the normal representation [5]. Walter [4] then

proposed a systolic array architecture for high-speed

hardware implementation of the Montgomery algorithm.

This architecture gives a throughput of one digit per clock

cycle and a latency of 2m+2, where m is the number of digit

in the multiplicand. A. However, this architecture needs

several millions of gates for the typical input of 512 bits. An

interesting choice is to implement only one row of the

architecture to perform single message encryption. This

would be realizable in a single IC using today's FPGA

technology. In this paper, a systolic array architecture,

suitable for reconfigurable logic implementation, of the

Montgomery modular multiplication is proposed. This will

become the core module in a proposed RSA coprocessor

that is implemented in a reconfigurable logic device, the

FPGA. This coprocessor will off-load computing-intensive

cryptographic operations off a general-purpose processor,

such that a high performance system can be obtained. To

achieve the required speed-up in the RSA operation a PCI

bus interface is employed. The prototype is fabricated in

Altera FLEXIOKE series FPGA mounted on a PCI card in a

Pentium PC.

Matthew Kwan [2] in order to solve the need for secure

encryption algorithms proposed a new algorithm similar to

DES. This algorithm is called ICE, which stands for

Information Concealment Engine, and it has the interface of

DES thus maintaining full compatibility with that

algorithm. It can act as a substitute in existing

applications. It is based on the idea of Data Dependence

Rotation (DDR) since it uses Controlled permutation (CP)

in order to maintain its cryptographic security, like] CIKS-1

and SPECTR-H64 algorithms [3, 4]. The ICE algorithm was

designed for use in software applications. Those

applications however are slow due to the use of modular

arithmetic [2]. So the need for faster implementations is

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 885
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

great. That can be achieved through hardware

implementations. The ICE algorithm has not been

implemented in hardware so there is a certain interest as to

if that is possible and if the results are good enough for the

hardware to be usable. Considering the fact that hardware

implementations are generally faster and more reliable than

software implementations the outcome of a hardware

design is even more interesting. An architecture and the

VLSI implementation of the ICE encryption algorithm are

designed in the following manner. The system operates for

the both encryption and decryption processes and has been

optimized for low hardware resources and for high–speed

performance. The proposed architecture has very

encouraging performance result in terms of speed and

throughput. This makes the design very useful in current

applications that use DES as the base of a cryptographic

protocol. With the proposed architecture we focus on

proving that the ICE algorithm can easily be implemented

in hardware.

2. Motivation
The secure transfer and storage of information in the

electronic realm has today become critical as the digital

world becomes more and more dependent on e-mail, secure

telephony, mobile internet, e-commerce, e-banking and so

on. Cryptographic systems can provide the objectives of

information security: confidentiality, user authentication,

data origin authentication, data integrity and non-

repudiation . In contrast to symmetric-key cryptosystems,

public-key cryptosystems are capable of fulfilling all of

these objectives. However, in order to be fast enough and

feasibly practical in the applications mentioned above,

public-key schemes have to be implemented in hardware.

Hardware implementations also provide for ease of

installation as well as security from tampering.

Security is a primary requirement of any wireless

cryptographic protocol. In order to find a solution to this

always up to date problem, cryptographic algorithms are

constructed to provide secure communication applications.

However, the clever design of an algorithm is essential if

the security of an application is to be maintained. Although

there are many good algorithms with different usages and

characteristics, not all of them can be characterized fully

secure. Many works from different research groups have

been published, analyzing cryptographic methods for

finding holes in the security strength of today’s encryption

algorithm. Thus new encryption algorithms are needed that

do not have such security holes. That however might have

the side effect of high complexity, which can make the

implementation of an algorithm very difficult if not

impossible. One of the major problems of modern

computer security is the design of cryptographic algorithms

that have as little vulnerabilities as possible while

maintaining their low implementation complexity. Many

algorithms that are cryptographically secure are not easily

implemented in computer applications especially in

hardware. Thus the need for hardware implementations of

secure algorithms becomes even greater.

3. RSA Cryptography

In RSA, to encrypt a message M to its cipher text C, we

perform C = XE mod M using the public key E. To restore

the message, X = CD mod M is performed, where D is the

private key. In general,

n-1

E = Σ ei*2i, ei € (0, l } denotes a

i=0

big integer that consists of n bit in radix-2, ei is the Ch digit.

Modular exponentiation is performed using the square and

multiply method as given below. Here, the exponent E is

treated bit by bit. Note that the two lines in step 2a are

modular multiplications under the same modulus, and they

have same multiplier Zi. Since they are independent of each

other, they can be executed in parallel. The loop runs for n

cycles where n is the number of bit in E. If higher radix is

used in E, then the number of digit to represent E and

hence the number of iteration is reduced. The drawback of

this speedup is that 2k-2 multiple of X have to be

precomputed and stored. k is the number of bit used to

represent one

digit.

Algorithm 1 : ModExp(X, E, A4)

compute P = XE mod M, E = X-l ei.2i,

 ei E { 0 , 1)

2. For i = 0 to n- 1 Loop

4. i=O

I . Po= I,Z0=X

2a. Ptemp = Pi'Zi mod M

Zi+ = Zlz in od M

2b. If ei 1 Then Pi+, Pt,omp Else Pi+, = Pi

3. End For

The speed of this algorithm relies on the speed of

modular multiplication in step 2a.

Encryption/ Decryption

Plaintext block M is encrypted to a cipher text block C by:

C = M e mod n (1)

The plaintext block is recovered by:

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 886
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

M =C d mod n (2)

RSA Key Generation

1. Choose two large primes p and q.

2. Compute n = p q

3. Calculate (n) = (p-1) (q-1)

4. Select the public exponent e € {1, 2, . . . , (n)−1}

Such that GCD (e, (n)) = 1.

5. Compute the private key d such that d×e ≡ mod (n)

Output: public key: kpub = (n,e) and private key: kpr = (d)

4. THE ICE ENCRYPTION ALGORITHM
ICE is a standard Feistel block cipher [2], with a structure

similar to DES. It takes a 64-bit plaintext, splits it in two 32-

bit halves and mixes them with the key in a fairly simple

process. The right half and a 60-bit subkey are fed into the

function F. Then the output is XORed with the left part of

the key and the halves are swapped.

This is the Transformation Round of the ICE algorithm.

This process is repeated for 16 rounds. However the final

round, before the ciphertext production, is different. The

final swap is omitted. The decryption process is the same,

except that the subkeys are used in reverse order. From the

above description of ICE algorithm it is clear that its

strength is centred in the F function. In ICE the 32-bit

plaintext, using a function E, is expanded in four 10-bit

values according to the manner:

E1= P1 P0 P31 P30 P29 P28 P27 P26 P25 P24

E2= P25 P24 P23 P22 P21 P20 P19 P18 P17 P16

E3= P17 P16 P15 P14 P13 P12 P11 P10 P9 P8

E4= P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

One of the differences from DES is that after the expansion

function E, key permutation is used [2]. A 20- bit subkey,

called permutation key is used to swap E1

with E3 and E2 with E4. When the odd bits of the

permutation key are set they swap E1 relative bits with E3

bits else they swap E2 relative bits with E4 bits. The

outcome is XORed with a 40-bit subkey and the fed in the

S-boxes.

The S-boxes of ICE use Galois Field exponentiation. Each S-

box takes a 10-bit input X. Bits X9 and X0 are

concatenated and form the row selector R while bits X8 to

X1 concatenated form the 8-bit column selector C. For each

row, there is a XOR offset value OR and a Galois Field

prime PR. The output of the S-box is an 8bit value which is

given by (C xor OR)7 mod PR . In Table 1 the

values of the XOR offset and the Galois Field primes can be

seen for all four S-boxes.

Table 1. The S-box XOR offset values and the S-box Galois

Field prime values

Sbox

O0 O1 O2 O3 P0 P1 P2 P3

S1 131 133 155 205 333 313 505 369

S2 204 167 173 65 379 375 319 391

S3 75 46 212 51 361 445 451 397

S4 234 205 46 4 397 425 395 505

The four 8-bit outputs of the S-boxes are combined using a

permutation function P in a 32-bit value which is the result

of the F function .

5. ARCHITECTURE

The proposed Feedback Architecture is shown in Fig. 1.

Figure1.The proposed Feedback Architecture.

The proposed Feedback Architecture performs both

encryption and decryption with input plaintext block and

key vector equal to 64 bits. It uses an input and an output

register. Each of them stores the values of the left and right

part of every round and swaps the two parts if needed

(according to the algorithm in the final round there is no

swap). Also a 16x60-bit RAM is needed to load and store

the round keys. The Key Expansion Unit creates the round

keys, using the 64-bit Input Key following the specifications

of ICE. The Keys are stored inside the RAM for every

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 887
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

round. The encryption process is fairly simple. In each

clock cycle, the data stored in the input register are inserted

in the ICE Transformation Round along with the subkeys

stored in the RAM. This process is repeated for 16

rounds. However at the final round, the Output

Register is used in order to swap the left and right part

of the ICE Transformation Round Output. That value of the

Output Register is the cipher text. The decryption

process follows the same process. However the subkeys are

used in reverse order. From the analysis of ICE, it is clearly

seen that the main design interest lies in the ICE

Transformation round of the algorithm, shown in Figure 2.

Especially, in the implementation of the F function. The F

function has four parts. The Expansion function E, the key

permutation, the S-boxes and the Permutation function P.

Key permutation can easily be implemented using two

multiplexers 2-1, while the Expansion and Permutation

functions are just a rearrangement of wires. So the highest

implementation cost of the F function lies

in the design of the S-boxes.

Figure 2. The ICE Transformation Round.

Considering that each S–box uses modular exponentiation

in order to calculate its output, a VLSI architecture based on

Montgomery Multiplication

algorithm is proposed. This component is specially

designed to do the mathematical function A7mod P. The

architecture of this component is pipelined, with 6 stages,

and it is based on the following algorithm:

Function

A7mod P (X, P)

1. A=MM(X, R’, P)

2. B=MM(A, A, P)

3. C=MM(B, A, P)

4. D=MM(C, C, P)

5. E=MM(D, A, P)

6. Out=MM(E, 1, P)

MM is the Montgomery Multiplication function and

R’=R2modP is a pre calculated fixed number. Step 1 is

needed to transform the input value X into Montgomery

format and step 6 to change the Montgomery formatted

result E into a normal number value. The Montgomery

Multiplication algorithm was implemented using a systolic

architecture, shown in Figure 3, based on the following

algorithm [5-8]:

Function MM (X, Y, N)

1. A=0

2. For k=0 to n-1 do begin

3. q=(a0 +xky0) mod b

4. A=A+xkY+qN

5. A=A/b

End

6. Return A

This algorithm is a modified version of the original

Montgomery multiplication algorithm. The base b is

considered Radix 2 (b=2) and R=2n where n is the bit length

of the value N. The architecture of the Montgomery

multiplication, as seen in Figure 3, is an array of Processing

Elements.

The architecture of the Montgomery multiplication, as seen

in Figure 3, is an array of Processing Elements (Figure 3(c)).

The elements on the first row, however, have a XOR gate

more than the basic Elements PE. This gate is used for the

calculation of the q value. Those elements are called Q-calc

Processing Elements (Figure 3(b)). The output of the array

is produced in a Carry

Save format so an adder is needed in order to get the final

result. For that function an adder was implemented using

Carry look ahead logic.

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 888
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

The input X of the S-box is XORed with the appropriate

value from Table 1. The output is fed to the A7mod P

function where P is the value taken from Table 1. The

appropriate values for the S-box are chosen from X9X0 bits

of the input using multiplexers 4-1. The result of the

A7mod P function is the output of the S-box. The structure

of an S-box is shown in Figure 4.

6. CONCLUSION

 We have compared RSA cryptography, ICE encryption

algorithm.

The modular exponentiation operation is the core of the

RSA algorithm that has become the most widely used

public key computer security algorithm. New architectures

for the implementation of Montgomery modular

exponentiation for RSA have been proposed. The new

architectures use a modified Montgomery algorithm in

which the operations of modular multiplication and

modular reduction are carried out separately but in a

parallel way.

ICE is a symmetric key block cipher specially designed

for software applications. It is designed for high clock

speed – performance and minimized area resources.

7.REFERENCES

[1] SCHNEIER, B., 1996. Applied Cryptography: Protocols,

Algorithms, and Source Code in C, John Wiley & Sons.

[2] A. P. Fournaris, N. Sklavos and O. Koufopavlou

VLSI architecture and FPGA implementation of ICE encryption

algorithm.

[3]Deng Y., Mao Z., and Ye Y.,. 1998. Implementation of RSA Crypto-

Processor Based on Montgomery Algorithm.

[3] Zhang. C.N, Xu. Y and Wu. C., 1997. A Bit-Serial Systolic

Algorithm and VLSI Implementation for RSA.

[4] Hinek. M., 2010. Cryptanalysis of RSA and Its Variants.

[5] Rivest, R., Shamir, A., and Adleman, L, 1978. A Method for

Obtaining Digital Signatures and Public Key Cryptosystems.

Communications of the ACM.

[6] Stallings W.2003, Cryptography and Network Security:Principles

and Practices.

[7] Burnett S. and Paine S, 2001. RSA Security’s Official

Guide to Cryptography. McGraw-Hill.

[8] Ashenden P. and Lewis J, 2006. The Designer’s Guide to VHDL.

Morgan Kaufmann Publishers.

[9] Hwang E. Digital Logic and Microprocessor Design with VHDL.

